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The idea of producing extra-strong magnetic fields by compressing (imploding) conducting
shells was put forward by Terletskii in [1]. In the experiments of[2 and 3] based on this
method, field intensities on the order of 107 G were achieved. The plane problem of magne-
tic field compression without allowance for displacement currents in a vacuum was solved
by Bichenkov [4]. We shall consider the plane and axisymmetrical problem of compression
of a homogeneous magnetic field for the case of an ideally conducting boundary moving in
accordance with a prescribed law. The method of integral transformations is used in solv-
ing both problems.

1. Formulation of the plane problem and its solution by the meth-
od of characteristics. Let us consider the propagation of plane electromagnetic
waves in an infinite vacuum slot bounded by plane conductive walls x = =1 (¢) (Fig. 1).

Assuming that the electric and magnetic fields have the non-
zero components E = E, (x, ¢), H = H, (x, t), we can write the

wave propagation Eqs. as:  J3H 9 o0E  oH (1.1)
9z = Bt 9z ~

e The electric field E’= E + ¢-1 V x H in the coordinate system
I connected with the moving wall must vanish at the wall.
For x = 11(1) the velocity of the wall V="11’(¢) i, Hence,
Ut
/——21(1:)—— E(+I), )+ *;(“)H(i I, =0 .2
(] Thus, we must find the solution of system (1.1) in the domain
D0 <t<T,|x| <i(t)}(where T is the time required for the walls
Fig. 1 to meet) which satisfies conditions (1.2) at the moving wall and
the initial conditions H (x, 0)=H,, E(x, 0)=0.
The electromagnetic field outsidé the vacuum cavity is assumed to be zero at the initial
instant, We shall consider () a decreasing fanction and assume that [ *(0) = 0 (there will

otherwise be discontinuities at the points (£1(0), 0)) and | 17(¢)| <.
The magnetic field is symmetrical and the electric field antisymmetrical with respeet to

the coordinate x, so that the solution of system (1.1) can be written as
E(x, t)= F(z - ct) — F (—x+ci)

H(x, t)=F (x4 ct) + F (—z + ct)3)
Let £= x + ¢t, n= x = ct. From the initial conditions we find that
F(E) =1,y Ho, |51 < lo
Thus, the solution of the problem is defined in domain 1 (Fig. 2) {{ £| <lq, | | <lo}.
Since the solution in domain 1 is known, we can use boundary conditions (1.2) to find the
solution in domain 2 {|£| <ly, — %, <n< =l } and in domain 3{|&| <k, Ig <<=},

where xy= 1(¢,)+ cty, and ¢ ; is a root of Eq. e, = I(¢y)+ 4.
Continuing this process, we can find the electromagnetic field distribution in the entire

(1.3
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domain D in a series of steps.
Let the function p ({) satisfy Eq.

Ipy+ep=1¢ (1.4)
Let us determine x, and ¢, from the recurrent rela-
tions 2 = 1 () + ot
L(ty) = —xp_1 + cty, th=0 (1.5

From boundary conditions (1.2) we find that
F(—l({ty+et)ce— V() —
~ F{U{) 4+ ct)c+ V() =0 {1.6)
Relation (1.6) enables us to determine the value of

F({) in the interval (xy, %, 4;) if the values of this
function are known in the interval (xx.(, %, ). We set

I, 0 , Fi(0)=F({) for (E (g, xy). We can show that
. A =
Fig. 2 Fr@ = Fy(—%+2p @) z + 7 g:((g)) '
Fo(¥) = aHo a.n

The function F {{) defined by Formulas (1.7) is continuous in the interval — 1, < L<eT,
Let us denote the maguetic field at the wall by H (1{¢), t) = H* (1), The function F {{)
can be related to the field H* at the boundary of the domain. In fact, from (1.3) and {1.7) we

find that
F (§) = 1y Ho, — <<l

FOQ="H @O U—-v@) >k vg=cl'(@) (1.8)

2. Solution of the plane problem by the method of integral tranmse

formations. Let us apply the Fourier transform f with respect to the x coordinate to the
functions £ and H. This transform is given by

it i

f{Ey =gk, 1) = 5 E(z, t)edz, f(H}=h(k, ) = \ H(z, )*™ dz (2.1
~I(t) ~kt)
E(z, z)=.2_15 5 gk, t)e ™ dk,  H(z, t)= % 5 h (k, t) e~ g (2.2)

Application of the transform f to initial system (1.1) yields the following system for the
Fourier representations g and A:

~—thg = 9k ] &4, — ikh = ¢! 8g/ 8t + 2 isin kL (f) (1 — ® ()} H* ()
Eliminating the electric field from the equations and boundary conditions, we obtain an
Eq. for &,

Fh/ OB+ = (t, k), @ (4, k)= 2H* (&) sin K (1) (1 — * (1)) %k (2.3)
The boundary conditions automatically enter into the equation. The solution of Eq. (2.3)
is of the form

t
k{k, t)=h (k) eimi —-}_hg(k) e-—imt + S 9 {7, k)sinm(t-—t) dr, © = ck (2.4)
16

0
The functions hy (k) and by (%) can be determined from the initial conditions
hy (k) = hy (k) = Hok™ sin kio (2.5)
The expression for h (k, t) includes the unknown field H* (¢) at the boundary. Its deter-
mination requires the use of inversion Formula (2.2), in which it is necessary to set x = [(¢).
Here the integral in the right-hand side of the inversion formula must be doubled, since the
field outside the vacuum cavity is assumed equal to zero and the Fourier integral converges
at the point of discontinuity to its average value

YAdH (1) — 0, &)+ H (1) + 0, )} = ,H* (1)
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Let the function 7(¢) be a root of Eq.
c(t— )= 1)+ I(1) (2.6)
H* (t) then satisfies the following functional Eq.:
H ()= Ho [l + v,  0<i<y
H* @) =H (1 () {1 — vt + » (7, Lh<t<T
The function H* () is known in the interval (0, ¢;). This implies that the function H* (7
(¢)) is known in the interval ¢, <t <¢,, since the values of 7 run through the interval (0,
t,), so that relation (2.7) makes itﬁossible to determine H* (¢) in the interval (¢, t,). Con-
tinuing to determine the values of A* (¢) in this way, we obtain recurrent formulas which
enable us to determine the values of H* (¢) in the interval (¢, t;4,) from the known values
in the interval (zl;l, ty). The values of ¢ are determined using Formulas (1.5). The pro-
cess of solving functional Eq. (2.7) resembles the process of finding the function F(E) in
solving the problem by the method of characteristics described in Section 1.
Let us define the sequence of functions 7, (¢) as follows:

T i) = Ty (T, () =710

2.7

Then
H*(y=H° () O<t<y), H*@)=H O (1) (G <t<t)
k-1
oty = _Ho__ = _ 1—2(7)
H® 140(t) Hk 11::[1 w (Tn (th, W (7) W (2.8)

We can prove the following statements regarding the qualitative features of the boundary
function:
1°% The time sequence t, defined by Formulas (1.5) tends to T as k - oo, while the se-

quence f, — f).; tends to zero as k - oo,
P %, The function 7(t) defined in {2.6) differs from ¢ by an ar-

bitrarily small amount as ¢ + T (Fig. 3).

3. Let 1°(£)§ 0 and I”(£) < 0 (in this case the time T required
T for the walls to meet is always finite). Then H* (¢) increases mon-
otonously with ¢, where lim H*(¢)=cc as ¢ » T.

From the known boundary function H* (t) we can detemine the
magnetic field distribution H (x, ¢) inside the cavity by making
Tit) use of inversion Formula (2.2). We obtain
Hx, ) = F{z ety + F(— 2 -} ¢},
0t 7 F() =YHo (— lo < §<ho)

iF' 3 FQ=YH*p(N{1 —v @@} (D)
18 The latter formula coincides exactly with (1.8), while the
function p({) is defined as the solution of Eq. (1.4).

As an example we can consider the case where beginning at the instant ¢; the velocity
of approach of the walls becomes constant and equal to v{¢,) = v. In this case Eq. (2.7) has
the simple analytic solution

H¥ ()= H* ) (T — ) / (T — 1) (B <<t D)
For the distribution ¥ (x, t) we obtain Expression
(T —t) (T —1)
(T —1R — =2/ c?

{lz1<<I(8), . <2< T} (2.9)

The ratio of the maximum value H (x, t) = H* (¢) of the field with respect to x to the min-
imum value H (0, t) with respect to x at the axis is 1/(1 — v2). For values of v2 small com-
pared to unity, the field in:?de the vacuum slot can be considered spatially homogeneous.

8. The axisymmetrical problem. Let the vacuum cavity be bounded by an infin~
ite circular ideally conductive cylinder whose boundary moves in accordance with the pres-
cribed law R (2). Here we assume that R (1) is a decreasing function and that R(0) = 0 and
[R“(5) | < ¢. Assuming that the magnetic field has the nonzero axial component H = H (r, )
and that the electric field has the axial component E = — E (v, t), we arrive at the system

H (x, 1) = H* (t;) (1 — 2?)
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cOH | 0r = OE | 8t, ¢ (rk)/ or = roH [ ot
with the condition
E@® (1), ) + B () cTHR(),0) =0
at the moving boundary and the initial conditions H(r, 0)=Hy and E{(r, 0)= 0.
By eliminating the electric field from the equations and boundary conditions, we can
formulate the problem for the magnetic field alone. The problem then reduces to the solu-
tion of Eq.

2H 2 9 oH
=5t v<r<ra, 0Ty (3.1
with the condition
aH d , R2() H(R(), 1) , 1OH
c2 (F)r:R(!) = '—'BT [R (t) H (R (t), t)] —_— R‘ '(‘t_) — — R (t) k'g‘>r=R(0

at the moving boundary, and the initial conditions
H{(r, 0) = Ho, (9H/3)_,=0
To solve the problem we apply a finite Hankel transform of the form
R(1)

he 0= \ HenTa@enrdrn  Hin= ke, 0doenede .
0

0
Here the field outside the cavity is assumed to be zero. The representation A of the
field satisfies Eq.
8h | 02 + c*p*h = @ (p,1), 9 (p,t) = H* ()pR (], (PR ()X
X1 —v2(t), v(@=c*R (), H*(@)=H(R({, (3.3)
With allowance for the boundary conditions, the solution of Eq. (3.3) is of the form

¢
HyR tpJ1(pRo) ', ( i t —
hp, §) = 22 o c0s cipJ 1 (pRo) +SW(& T)sine( T)pdT (3.4)
p B °p

The function ¢ (p, ¢) includes the unknown field #*(¢) at the boundary of the domain.
To determine this field we proceed as in the plane case, making use of the inversion for-
mula from (3.2) in which we set 7= R (£). Doubling the integral in the right-hand side, we
h

ave -
H* (1) = 2HoRo S Jo (R (£)) J1 (pRo) cos ctp dp +-

0
co ¢

+4- 2¢ S {S H* (Y R(v) Ty (@R (T {1 — v2 (7)]sinc t — 1)p d‘l:} Jo@R(M)pde  (3.9)
o 0
We can reverse the order of integration in the latter integral if by the double integral we
mean the limit
o ¢

S (S H* (t) R (%) J1 (R (v)) (1 — v* (V)] sinc (t —T) p dr) Jo(eR () p dp =
0 0

(s ]

t
= b§§0§ e {§ HY (0 R() T3 (pR () (1 — v (9)]sine (¢ — ) p e} Jo (oR () p dp
We write
M, =H* (MR [1 — v*(7)] sinc(t — 1) pe™ Jo (p R (1)) J, (PR (T)p.
Then, if H* (7} is integrable over the interval (0, ¢), the integrals
t [eo}

SM(p, ) dv, S M@, t)da

0 0
converge m?ifonply — the firstinp, p € (0, ), and the second in 7 — over any compact
interval which lies inside the interval (0, t} and does not contain singularities of H* (¢).
For example, let H* (t) have a single singularity at ¢t = ¢*.
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We stipulate that A (8) is a compact set {AG)=[0, ¢* = 8] +[e* + 5, 1},
I1(8,p)= S M (p, T)dx
A(S)
Then

oo

{16, 1ap

¢
converges uniformly in 8, 0 <8 < 8§, where §; is an arbitrarily small positive number. By
virtue of the uniform convergence of the above integrals, we can assert that |5

OSO(tS M, 7) dr) dp = § (o§ M (p, T) dp) dr (3.6)
o0 e 0

Making use of (3.5) and taking the limit as b » + 0 in (3.6), we obtain the following Vol-
terra integral Eq. of the second kind for H* {¢):

H
H* (1) =B (t) + 20 S R(V)[1—v2 ()] § (¢, ©) H* (v) dv (3.7
0
B(t) = 2HoRy S Jo(0R (1)) J1 (pRo) cos ctp dp
o
S, 1) = lim § o sine (t— D)oo (pR (1) T2 (0R (Do dp (3.8)
“T

In the classical sense the integral
oo
S zJo (o) Jy {Bx) sin 1z dx
0
diverges for all nonzero values of @, 3, and y. However, the above integral can be regula-
rized by assigning to it some generalized value |6
o0

(e, B, 1) = lim S €% Jy (ax) J1 (Bz) « sin 1 do
—-1-0
4]

Considering the convergent integral
o

¥ (a, B, 1) = S Jo(ax) Jo (Br) sin vz dx
0
we can prove that @ = —~ V¥ /38, The integral ‘I‘(Ja, B, ¥ ) can be expressed in terms of
Legendre functions of the first and second kind {7

V(B 1N=0 0{r<B—a B>aq)

1
¥, B, 1) = 37&_51)*’/’(“” B—ay<<B+a)

1
¥, B 1) =— Vb Qu,(—A) Btolr<oo), A= +ta?—17?)/20p

In this case the Legendre functions reduce to total elliptic integrals of the first kind,
and we can show that

1

LLRY2 —m 2 T 1
¥, B M= RE () (B-ta<{y<eo), kz@_%)’ B=7%

n Vap
Hence, for ®(a, B, y)= —A¥/3 B we have Formula
®(x,B.7) =0 O<r<B—a)
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rp—o v f—at
® (@ 8,1 = svag KWt~ g )+ E® iy
B—alr<B+0a)

_ p T T+ B
® @810 = sl (KW —E® i —y] G ra<1<e

Let us now consider the integral

Qa, B 1) = S Jo (az) J1 (Bz) cos 1z dx
V]

We can show that
v

Q(a B, 1) =Q(a, B 0)— S O (a, B, v) dv (3.9)
[

Expression (3.9) will be used only for the values Y <a+ B. Fory>a+ 8 the integral
Q(a, B, y) is computed in [8]. We obtaxn

Q (e, E N=1/8 O<r<B—a)
_1 i _a__ vt 4 B — a? 2R —at
Q(a, B, T>—B+31/BS[K<") (——4aBn‘3 — 1)~ EWm] dx
0

v= V(B —aP + tapx? B—alT<B +a

3 o B2
e@pn=—gr (325 5)  gracicw
5] Here F (a,, as; 6, 8% %, y) is a generalized hypergeometric function of two variables
The functions B (¢) and S (¢, 7) defined in (3.8) can be expressed in terms of ®(a, 8, y)
and Q(a, B, y) as follows:
B (t) - 2H0R°Q (R (t)v R,, Ct)v S (tv T) = (R (t)v R (T)9 c(t— T))
For B (¢t) and S (¢, 7) we obtain chinnulas

B(t)=Ho(i +7[:—VER—(T)S [K (u)(f.: - 1) E(u)uz(i—ﬂ.x—z)]%‘,—dx>
0

w (v [Rot ROP—ct2\th
k _(1_‘ : GR,R () ) (0 <tty)
*2 Ro2 — R (1)2
o = =~ iﬁ;}?(t) O e VB ROF T RR ()
R _ (3 R(® R
B =— Moo Fu( 5. 11,2 -, 1) m<i<T)

Here t; is a root of Eq. Ry + R(2) = ct.

- 1 % 9
S0 = iR (©y VR()R (1) [K(k*“)(l k,* ) + E(k*)k+”(1—k+2>]
0t 0Ty, h<tT, A<t <t}

b= (1 RO EROP @0y _ R4t —mp— Ry
v = AR () R(7) ' %, = AR () R (%)
_ t 8.k,
S(t, T)-——ZRR(") VW"+ [K(i/k+)+E(1/k+) 1_k+2]

<t LT, 0 T<TA ()}
The function A(2) is defined by Eq. e(¢ —A)= R(¢) + R(A).
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The absolute term of the integral equation for B (1) assumes the value H for t = 0 and

has a Ingarithmic singularity for ¢ = ¢;. For t > t; we have Formula
Bty - — Mo (Be/ 2% (1 -1- O (Ro¥/ &%)}

The function S (¢, 7) has a singularity for 7 = A(¢) which is a superposition of a logar-
ithmic singularity and a simple pole. The physical meaning of the function A(t) is simple(*).
If the perturbation begins to propagate from the cavity boundary at ihe instant A{2), then
the wave reflected from the cylinder axis returns to the wall at the instant .

Thus, the initial problem in the axisymmetrical case reduces to a Volterra integral Eq.
{**) of the second kind (3.7) in the boundary function.

LetL{t, T)=2cR{T) (1 v 2( 7)) S(t, 7). Eq. {3.7) then becomes

i
ey s -\ L v @de (3.10)
0

Fort <¢; the kernel of Eq. (3.10) is continuous, and the solution H* {¢) can be represen-
ted as a Neumann series,

H*(t) =B (1) - Q LM (t, v) B (1) dv
nw 1 i}

where L7 (¢, T) are interated kernels from L (¢, 7).

For t > ¢, Eq. {3.10) becomes singular, since L (¢, 7) has a singularity in Tat the point
7 = Ale) Here the integral in the right-hand side of the equation represents the principal
value.

If we know the boundary function H* (¢}, we can find the magnetic field distribution H{r,
t). This requires the use of inversion Formula (3.2).

The distribution of H {r, t) can be written as

H(r, 1) =B, (r, 1)+ c \ II* (1) R () [ — v (V)] Sy (7, 8, T)dT

& ey

By (r, t) = Hy {Q<i<€“(ﬁ’o—r), 0l r <R (1)}

B, (r. z)_—110(1—+ —-Vﬂors ’:A (%) 1) E(x );2—(%—_—%—-2)]%01%)
(0<’<R(t),(ZRO—")C_I<1<(R0‘* ryet}
A=(x~%~i) v VBT bRy, b= =
Uy (0= — o Bl 3 0,2 ) B) 0P <R, (Rorr)et <t<T

Sy (r 1, T) =0 {0<r<R(1)-—-r(twt}, 0< 1< Ry, 0L 1< 1)

[ ) ik -*————f'}:—*'—“
Se(r, 1) = 2R (1) VW’T (k)1 — )+ E( —)}f_z(imsz) }
{R(t) —c(t—t)<r < R(t), 0<.!<Rgc*1, 0t L8}
VK r <R, Re <t LT, ol
k‘w<1 I + R(T)? — 2t — 1)? )"z’ 9 2t —1)R—r? LR (1)

4r R (1) - 4R (r) r
1
- E— k k
Salrt, ) = onk_R(t) VR (t)r [K(” D+ EQ )1 }

(NS r< R(t), Ry tLT, O0Lrv <0}

*) A similar function arises in the plane problem (Formula (2.6)).
*+) In the plane case the integral equation degenerates into a functional equation since its

kerne! has the form of Dirac’s delta.
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The function @ = @ (¢ ~ r/¢) can be found from Eq. ¢ (t ~ @) =7+ R{w).
The above formulas imply that the front of the first wave reflected from the axis of the

cylinder contains a singularity.

The method of integral representations is a more versatile way of solving problems on

the magnetic field compression than is the method of characteristics. Thus, for example,
the solutions of problems with axial symmetry or problems taking account of the dissipation
of electromagnetic field energy cannot be represented as simple waves, and only the method
of integral representations can be used in dealing with them. The latter method can also be
applied to a certain class of moving boundary problems in which the boundary of the domain
acts as a screen eliminating interaction between the exterior and interior portions of the
system
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