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The idea of producing extra-strong magnetic fields by compressin 
shells was put forward by Terletskii in [l]. In th 

(imploding) conducting 
e experiments of f 2 and 31 based on this 

method, field intensities on the order of 107 G were achieved. The plane problem of magne- 
tic field compression without allowance for displacement currents in a vacuum was solved 
by Bichenkov [4]. We shall consider the plane and axisymmetrical problem of compression 
of a homogeneous magnetic field for the case of an ideally conducting boundary moving in 
accordance with a prescribed law. The method of integral transformations is used in solv- 
ing both problems. 

1. Formulation of the plane problem and its solution by the meth- 
od of characteristics. Let us consider the propagation of plane electromagnetic 
waves in an infinite vacuum slot bounded by plane conductive walls z = f 1 (t) (Fig. 1). 

Y 

j 

b 

Assuming that the electric and magnetic fields have the non- 
zero components E = E, (z, t), H = $ (x, t), we cau write the 
wave propagation Eqs. as: 8H aE a? 

cyg=;ji, cz 
x z (1.1) 

The electric field E’= E + c-t V x R in the coordinate system 

i X connected with the moving wall must vanish at the wall. 
k For z = + 1( t) the velocity of the wall V = k I’( t) i. Hence, 

1’ (t) 
Zlh? E (+ l(t), t) + 7 H (f 1 (t), t) m= 0 (1.2) 

2 Thus, we must find the solution of system (1.1) in the domain 
D{O<t< T, 1x1 <Z(t)) ( h w ere T is the time required for the walls 

Fig. 1 to meet) which satisfies conditions (1.2) at the moving wall and 
the initial conditions H (x, 0) = H,, E (x, 0) = 0. 

The electromagnetic field outsidi the vacuum cavity is assumed to be zero at the initial 
instant. We shall consider 1 (t) a decreasing function and assume that 1 ‘(0) = 0 (there will 
otherwise be discontlnuities at the points (&.;-I (O), 0) ) and 11’(t) 1 < c. 

The magnetic field is symmetrical and the electric field antisymmetrical with respect to 
the coordinate x, so that the solution of system (1.1) can be written as 

E (2, t) = F (Z + ct) - F (--z+ct) 
(1.3) 

H (I, t) = F (x + ct) $- F (-z + ct)3) 

Let&J=x+cbq=x- ct. From the initial conditions we find that 

F (E) = ‘iz Ho, I E I < lo 

Thus, the solution of the problem is defined in domain 1 (Fig. 2) {I [I < 10, 17 1 < I,). 
Since the solution in domain 1 is known, we can use boundary conditions (1.2) to find the 
solutionindomain21)51<6.-xt<71<-r,)andipdomain31I~I<b,Io<rl<zt1, 
wherezl=l(r )+ctl, 

Continuing Ai 

and t t is a root of Eq. ctl = l( cl)+ I,. 

1s process, we can find the electromagnetic field distribution in the entire 
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Fig. 2 

domain I) in a series of steps. 
Let the function p (5) satisfy Eq. 

1 (PI + CP = t (1.4) 

Let ua determine xk and tk from the recurrent rela- 
tions 

x1( = 1 (tk) + Ctk, 

1 (tk) = -x&l + ctk, to = 0 ‘(1.5) 

From boundary conditions (1.2) we find that 

F f-f (tf + ct) (c - I’ (t)f - 

- F (1 (t) + et) (c + 1’ (t)) = 0 (1.6) 

Relation (‘I.61 enables us to determine the value of 
F ((1 in the interval fxkr xk+t ) if the values of this 
function are known in the interval (xk_l, xk 1. We set 
Fk(<)= F(c) for [C5(xk,t, xk). We can show that’ 

Fo(Q = L/& (1.7) 
The function F ((1 defined by Formulas (1.7) is cont~uous in tbe interval - I, < << CT. 
Let us denote the magnetic field at the wall by H (I (t), $1 = H* f tf. The function F (4) 

can be related to tbe field H* at the boundary of the domain. In fact, from (1.3) and (1.7) we 
find that 

F (5) = ‘/a Ho, - lo < 5 < lo 

F (6) = l/s H* (P (5)) U - u (P kt))}, 5>zo; u (t) = c-‘Z’ (t) (1.8) 

2. Solation of the plane problem by the me’thod *of integral tranm 
form at i o n a. Let us apply the Fourier transform f with ZeSDSCt to the x coordinate to the 
fanctions E and H. Thistrkform is given by * _ 

l(r) 
- f(E)=g(k Q= 
s 

E (cc, t) eikXdx, f (H) = h (k, t) = W (5, t) e’” dx 

-l(t) 
co co 

g (k, t) e~-*~‘dk, (2.2) 

Application of the transform f to initial system (1.1) yields the following system 
Fourier representations g and A: 

for the 

--ikg = &ah 1 St, - ikh = c-l dg I at + 2 isin k1 (t) (1 - 9 (t)) fi* (t) 
Eliminating the electric field from the equations and boundary conditions, we obtain an 

Eq. forh, 
@h / ata + c*k% = cp (t, k), T (t, k) = 2H* (t) sin kl (t) (1 - u2 (t)) Sk (2.3) 

The boundary conditions automatically enter into the equation. The solution of Eq. (2.3) 
is of the form 

(2.1) 

h (k, t) = hi (k) eiwt + hz (k) ,-iot + \ q(% k@z+-z) dr, 0 = ck (2.4) 
* a 

The functions 6 t fk) and 6, fk) can be determined from the initial conditions 

h, (k) = h, (k) = lY~k+ sin klo (2.5) 
The expression for h (k, t) includes the unknown field H* (t) at tbc boundary. Its deter- 

mination requires the use of inversion Formula (2.2). in which it is necessary to set x 3: r(t). 
Here the integral in the right-hand side of the inversion formula must be doubled, since the 
field outside the vacuum cavity is assumed equal to zero and the Fourier integral converges 
at the point of discontinuity to its average value 

‘Is@% (2 @) - 0, t) + H (I (t) + 0, 1)) = ‘I&* (t) 
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Let the function 7(f) be a root of Eq. 

c (t - -c) = 1 (t) + 1 (T) (2.6) 
H* (t) then satisfies the following functional Eq.: 

H* (t) = Ho [I + v (t)]“, o<t<t, 

H* (t) = H* (z (t)) {I - v (T (t))}[l + 2: (f)]-‘, t,<l<T 
(2.7) 

The function H* (t) is known in the interval (0, tt). This implies that the function H* (7 
($1) is known in the interval t t < t < t2, since the values of ‘TN~ through the interval (0, 
tl), so that relation (2.7) makes it 
tinning to determine tbe values of I! 

ossible ta determine HZ (t) in the interval (tt, t 1. Con- 
l (8) in this way, we obtain recurrent formulas w f * lch 

enable us to determine the values of If* (t) in the interval ( tlr, tk+t ) from the known values 
in the interval ( 
cess of solving 

k t,). The values oft 
ctioaal Eq. (2.7) resem ‘6 

are determined using Formulas (1.5). The ro- 
lee the process of finding the fonction F ( % 1 in 

solving the problem by the method of characteristics described in Section 1. 
Let us define the sequence of functions 7, (t) as follows: 

% @) = %-1 (T WA Zl 0) = 't (t) 

Then 

H* (t) = Ho (t) (0 < t < tl), H* (t) = Ho (t)lI, it) (tk-l < t < ti) 

k-l 

H”(t) = Ho 1 -v (2) 

1 + * (t) ’ 
q = I-I w (Tn (t)), W(z) = 

1+ v (V 
(2.8) 

n=l 

We can prove the following statements regarding the qualitative features of the boundary 
ftUKti0It: 

lo. The time sequence tk defined by Fomoulas (1.5) tends to 2’ as k + m, while the se- 

qnence tk - tk_1 tends to zero as k -V 00. 

z 

f 

~ 

20. The function 7(t) defined in (2.6) differs from t by an ar- 
bitrarily small amount as t + T (Fig. 3). 

30. Let l’( t),< 0 and r”(t) < 0 (in this case the time T required 
for the walls to meet is always finite). Then H* (t) increases mon- 
otonously with t, where lim H+ (t) = 00 as t -+ T. 

From the known boundary function H+ (t) we can determine the 
magnetic field distribution H (n, t) inside the cavity by making 

Zltf use of inversion Formula (2.2). We obtain 

t H (cc, 1) = F (z -i_ et) + 8’ (-- x -t ct), 

0 1, T 
F (5) = %‘zHo (- lo < 5 <lo) 

Fig. 3 
1: f S) = ‘I&* (P (5)) (1 - u (P (5))) Go < 5 < CT) 

The latter formula coincides exactly with (1.8). while the 
function p (5) is defined an the solution of Eq. (1.4). 

As an example we cau consider the case where beginning at the instant tt the velocity 
of appmach of the wall. becomes constant and equal to v( t,) = v. In this case Eq. (2.7) has 
the simple analytic solution 

H* (t) = H* (ts) (T - ts) /’ (T - 1) (tz < t < T) 
For the distribution H (x, d we obtain Expression 

(T - t2) (T - t) 
H (2, t) = H* (to) (I- v2) (T _ t)z _ zz, c2 

{I x I < 1 (6 t2 < t < Tl (2.9) 

The ratio of the maximum value H (x, t) = H* (4) of the field with respect to x to the min- 
imum value H (0. t) wilh res eat to x at the axis is l/(1 - ~2). For values of 02 small com- 
pared to anity, the field ins de the vacuum slot can be considered spatially homogeneous. P 

3. The axis mmetrfcal problem. Let the vacuum cavity be bounded by an infin- 
lta cironlsr ideal y conductive cylinder whose boundary moves in accordance with the pres- T 
cribed law R I rf. Here we assume that R (t) is a decreasing function and that R’(O) = 0 and 
IR’(t) 1 < c. Assuming that the magnetic field has the nonzero axial component H = H,(r, t) 
and that the electric field has the axial component E = - E o( r, t), we arrive at the system 
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caH / ar = aLY I at, ca (rE) i i3r =. raH I at 

with the condition 
E (R (t), t) t- R’ (t) c-‘H (R (tht) = 0 

at the moving boundary and the initial conditions H (r, 0) = Hu and E (r, 0) = 0. 
By eliminating the electric field from the equations and boundary conditions, we COO. 

formulate the problem for the magnetic field alone. Tbe problem then reduces to the solu- 

tion of Eq. 
aw C= a ati -- 
at2 = r i?r ,r 37 ! 1 V<r<R(% o<t<rl (3.1) 

with the condition 

arr 

c2 z ,.=q(c) = - dt ( ) 
d 1 R’(t) H (R (t), t)] - 

R” (t) /I (R (t), 1) 

R (t) - R’ (Q ia; ) r=R(!) 

at the moving boundary, and the initial conditions 
H (r, 0) = Ho, (m / at),=, = 0 

To solve the problem we apply a finite Hankel transform of the form 
R(i) CO 

h (p, t) = 1 H (r, t) Jo (pr) r dr, H (r, t) = 1 h (P, t) Jo (pr) P dp (3.21 

Here the field outside the cavity is assumed to be zero. 
0 

The representation h of the 

field satisfies Eq. 

a% / at2 + ~~p2h = cp (p,t), ‘p ht) = c2w* (t)pR (tV1 (PR (1))X 

X(1 - II2 (t)), v (t) = c-l R’ (t), H* (t) = H (R (t), t) (3.3) 

With allowance for the boundary conditions, the solution of Eq. (3.3) is of the form 

h(P, t) = 
HoRo cos CtpJl (PRO) ‘+ i rp (p, z) sirpc (t - z) p ~~ (3.4) 

P 
0 

The function ‘p (p, t) includes the unknown field H* (t) at the boundary of the domain. 
To determine this field we proceed as in the plane case, making use of the inversion for 
mula from (3.2) in which we set rs R (t). Doubling the integral in the right-hand side, we 
have 

00 

H+(t) = 2HoRo 
s 

Jo (PR (t)) Jl (PRO) cos ctp dp + 

0 

i-4 H* W R (~1 JI (PR W) If- v2 @)I sin c (t - z) p do Jo (PK (1)) p dp 
I 

(3.5) 

We can rkerie the order of integration in the latter integral if by the double integral we 
mean the limit 

co t 

US 
H* (z) A 6, Jl (PR (r)) 11 - va (z)] sin c (t - r) p dz Jo (pR (t)) p dp = 

0 0 
m t 

H*(z)R(z)J~(pR(r))[l-vz(~)]sinc(t-z)pdt 

We write 

M (p, .t) = H* (z) R (7) 11 - u2 (t)l sin c (t - ~1 pembp JO (PR 0)) J, (pR (r))p. 

Then, if H* (~9 is integrable over the interval (0, t), the integrals 
I co 

s 
M(P> r) dt, 

5 
M (P, ~1 dp 

0 0 

converge uniformly - the first in p, p E (0, m), and the second in T - over any compact 
interval which lies inside the interval (0, :) and does not contain singularities of H* (t). 
For example, let H+ (t) have a single singularity at t = P. 
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We stipulate that A (6) is a compact set ! A (6) = [O, t+ - 81 + [f+ + 8, :I], 

Then 

I(& P) = s M (P, %I d’F 
A@) 

co 

s 
Z@, PI dP 

rJ 

converges uniformly in 6, 0 < 6 < 6 , where 8, is an arbitrarily small positive number. By 
virtue of the uniform convergence 01 the above integrals, we can assert that [S] 

00 I 

US (3.6) 
0 0 

M(p,r)dT)dp=5(SM(p.I)dp)dl 

Making use of (3.5) aud taking the limit as 6O-r +“O in (3.61, we obtain the following Vol- 
terra integral Eq. of the second kind for H* (t): 

w+ (t) = B (t) + 2c i R(z) [I - v2 (r)] S (t, z) H* (z) dr (3.7) 

0 
a, 

B(t)= 2HoRo Jo(pR(t))Jl(pRo)cos clpdp 
s 
0 

M 

S (t, ‘c) = lim 
s 

eWbp sin c (6 - r) pie (PR ft)) $1 (PR Wt P dP 
b-++o o 

(3.8) 

In the classical sense the integral 
co 

s 
zJu (~2) .?I (Px) sin yr dx 

0 

diverges for all nonzero values of a, 6, and y. However, the above integral can be regula- 
rized by assigning to it some generalized value 161 

(D (u, p, y) = ;i+n~~~ eebnfo (ux) Jl@r) r sin TX dx 
0 

Considering the convergent integral 

Y (a, p, r) = 1 Jo (a~) Jo (Px) sin yx dx 
0 

we can prove that (9= - d\V ia& The integral y fl, y ) can be expressed in terms of 
Legendre functions of the first and second kind 

U’(% P, r)=O (O<T<P---, P>af 

y (a, P, Y) = - h Q-t,, (- 4 (P -t- a. <Y < m), .‘l = (p2 + u3 - T‘J) / 2ap 

In this case the Legendre fnnctions reduce to total elliptic integrals of the first kind, 
and wa can ahow that * 

Y(a, P. Y)=O cO<r<P--Ct)* y (% Pv 7.1 = ;I $Jqj --h’(k) (P-a<r<P+u) 

Hence, for @(a, 6, y) I - d\lr/afi we have Formula 

CD (a, P. Y) = 0 (O<r<B--a) 
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@ (a, B, r) = 2np IfiB L ( K(k) 1 - 
7” + fir - a2 7” + p” - a$ 

4apk” ) + E(k) 4a/3k2(l - k2) I 

(P-a<r<P+a) 

@ (a- P, 7) = 2np FrB pw +p + pz - a2 
- ’ (IL) 4ap (1 - p*) 1 (P+a<r<=) 

Let us now conaider the integral 
03 

8 (a, p, Y) = \ JO (ax) Jl (Px) cos TX dx 

We csn show that 
0 

8 (a, p, r) = Q (a, P, 0) - ( @(a, P, v) dv (3.9) 

Expression (3.9) will be used only for the values y <a + /!?. For y > a + 6 the integral 
Q (a. 18. v) is comonted i! 

0 

v = Jf(p - a)a + 4afixa (P-a<r<P +a) 

ata, P, T) - - &F&(&l; 1, 2; $, 0) (P+a<r<-) 
Here 

191. 
F,(at, aq; 6, 8’; x, y) is a generalized hypergeometric function of two variables 

The functions B (t) and S (t, 7) defined in (3.8) can be expressed in terms of @(a, 6, y) 
and 0 (a, p, y) as follows: 

B (t) = 2Ho.Ro~ (R (t), Ro, ct), S (t, t) = CD (R (t), R (r), c (t - r)) 

For B (L) and S ( C, 7) we obtain Formulas 
I?. 

f)* E 

Vet + Ro2 - R (t)2 
4RoR(t) ’ v* = V/[&I - R (t)12 + 4xgRoR (t) 

B(t)=--IIogFd(;, 1; 1,2; Rg, S) (h < t < T) 

Here tl is a root of Eq. Ro + R (t) = ct. 

s (t, r) = 
1 

23x17 (‘cl T/R (t) R (z) [K(k+)(i - +) + E(k+)k+Z(fLk+2)] 

(0 < t < h, 0 < f < t), {tl< t < T, h P) < r < tl 

k 

+ 
= 1 _ [R(t) + I? (r)12-- c2(t--Y ‘12 ( 4R (t) R (r) ) ’ 

6 = R(r)2 +cz(t-r)z-- R(t)2 
+ 4R (t) R (r) 

s (t, r) = 
1 

2~ W 1/R (t) R W k, C Wk+)+W/k+)~ + 1 

{h < t < T, 0 < 7 < k (t)l 
The function A( t) ia defined by Eq. c( t - h) = R ( t) + R (h ). 
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The absolute term of the integral equation for B (t) assumes the value Ho for t = 0 and 
has a logarithmic singularity for I = tt. For t >? tt we have Formula 

B (f) - If#j (RlJ2 / CV) {l -/- 0 (W / c‘“f2fl 
The function S(t, 7) has a singularity for 7 = X(t) which is a superposition of a Iogar- 

ithmic singularity and a simple pole. The physical meaning of the runction X(t) is simple(*). 
If the pe~urbation begins to propagate from the cavity boundary at the instant h(t), then 
the wave reflected from the cylinder axis returns to the wall at the instant t, 

Thus, the initial problem in the axisymmetrical case reduces to a Volterra integral Eq, 
(**I of the second kind (3.7) in the boundary function. 

Let L (t, 7) = 2 CR(T) (1 - u 2( 7)) S(t, 7). Eq. (3.7) then becomes 

/I’. (1) : II(t) ‘- ( T, (t, z) IT” (t) dz 

;, 
(3.10) 

For t < ti the kernel of Eq. (3.10) is continuous, and the solution H* (t) can be represen- 
ted as a Neumann series, 

i’ t 

where .L* (t, 7) are interated kernels from L (t, 7’). 
For : > tt Eq. (3.10) becomes singular, since L ft, 7) has a singularity in 7at the point 

7 = h(r). Here the integral in the right-hand side of the equation represents the principal 
value. 

If we know the boundary function H* (tf, we ten find the magnetic field distribution H(t, 
I). This requires the use of inversion Fomrula (3.2). 

The distribution of H (t, t) can be written as 
f 

H (r, 1) -- B, (P, t) + c 
\ 
’ II* (t) R (T) (I- v (2)2] s, (‘, f, 2) dt 

0 

B, (r, t) = ITo 6) < t < c-l IRo - r), 0 < r < R it)) 

(0 < r < R W, (Ro - r) c-l < t < (Ro t- r) c-l} 
1.2 

k,== I-- i 
(R. k ry - &2 

) v, :: v(Ro - +-f- 4v?Ror, 6,~ 
v,z -+- RC2 - rz 

4&r ’ 4Rg 

ff,(r, f)----Ho-$-F4j+, 1; 1, 2; g 
(211 9 $$‘j {O<r<R(t), (Ro ;-r)cel <t<T) 

.Y* (r, f, r) -c 0 {O<r<R(z)-c(t-z), O<t<R,c-1, O<t<t) 

1 
S, o*, t, r) = 

2xR (t) JfxjqY- I 
h’ (k-1 ( 1 - $1 + E (k)k 2 (I*: k-2) -1 _ _ - 

{R(z)--c(t-Q<r<Il’(t), O<t<R@, O<z<t} 

F<r<R(t), Rot-‘<t <T, o<z<tl 

k_ =: 1 - E 
C 

+ R (r)]2 - f.2 (t - z)z I a 
4rR (t) i * 

6_ = c2 (t - r)2 - r? /-n (r)e 
4u (z) r 

1 6_k2 
s, (r, f, T) = ---= 

2xk_ R (r) 1/H (t) r i 
K (1 /’ k-f + E (1 ik_) 1 _ k_” I 

(‘1 < r < R (t), Ilo’,-’ < t < T, o<z <aI 

-*I A similar hnction arises in the plane problem (Formula (2.611. 
**) In the plane case the integal equation degenerates into a functional equation since its 

kernel baa the form of Dirac’s delta. 
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The function o = o (t - r/cl can be found from Eq. c (t - O) = r + R(w 1. 
The above formulas imply that the front of the first wave reflected from the axis of the 

cylinder contains a singularity. 
The method of integral representations is a more versatile way of solving problems on 

the magnetic field compression than is the method of characteristics. Thus, for example, 
the solutions of problems with axial symmetry or problems taking account of the dissipation 
of electromagnetic field energy cannot be represented as simple waves, and only the method 
of integral representations can be used in dealing with them. The latter method can also be 
applied to a certain class of moving boundary problems in which the boundary of the domain 
acts as a screen eliminating interaction between the exterior and interior portions of the 
system 
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